

Part-A

Q.1 to Q. 20 are Single Correct Type Questions (+4, -1) All Questions are Compulsory

1.	$\lim_{x \to \frac{\pi}{2}} \frac{\int_{x^{3}}^{(\pi/2)^{3}} \left(\sin\left(2t^{1/3}\right) - \int_{x^{3}}^{(\pi/2)^{3}} \left(x $	$\left(\frac{1}{2}\right) + \cos\left(t^{1/3}\right) dt$ is equal	to					
	(1) $\frac{9\pi^2}{8}$	(2) $\frac{3\pi^2}{2}$	(3)	$\frac{5\pi^2}{9}$	(4) $\frac{11\pi^2}{10}$			
		[JEE Main, 9 th	April 2024, E	Evening Sh	ift]			
			FPR: 4					
			Class: XII					
	Chapter: Definite Integration							
		Subtopic	: Leibnitz Th	eorem				
2.	The sum of the coeff (1) 63/16	icient of $x^{2/3}$ and $x^{-2/5}$ in (2) 21/4	the binomial (3)	expansion 69/16	of $\left(x^{2/3} + \frac{1}{2}x^{-2/5}\right)^9$ is (4) 19/4			
	[JEE Main, 9 th April 2024, Evening Shift]							
	FPR: 3							
	Class: XI							
	Chapter: Binomial Theorem							
	Subtopic: General Term and Coefficients							

JEE Main, 9th April 2024, Evening Shift

Fundupedia.com

3. The area (in square units) of the region enclosed by the ellipse $x^2 + 3y^2 = 18$ in the first quadrant below the line y = x is

MATHEMATICS

(1) $\sqrt{3}\pi + \frac{3}{4}$ (2) $\sqrt{3}\pi + 1$ (3) $\sqrt{3}\pi$ (4) $\sqrt{3}\pi - \frac{3}{4}$

[JEE Main, 9th April 2024, Evening Shift] FPR: 4 Class: XI Chapter: Ellipse

Subtopic: Auxiliary Circle and Parametric Equation

- 4. Let $\alpha, \beta; \alpha > \beta$, be the roots of the equation $x^2 \sqrt{2}x \sqrt{3} = 0$. Let $P_n = \alpha^n \beta^n, n \in \mathbb{N}$. Then $(11\sqrt{3} 10\sqrt{2}) P_{10} + (11\sqrt{2} + 10)P_{11} 11P_{12}$ is equal to
 - (1) $10\sqrt{3}P_9$ (2) $11\sqrt{2}P_9$ (3) $10\sqrt{2}P_9$ (4) $11\sqrt{3}P_9$

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XI

Chapter: Quadratic Equation Subtopic: Newton's Formula

5. Let $\vec{a} = 2\hat{i} + \alpha \hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = \beta \hat{j} - \hat{k}$, where α and β are integers and $\alpha\beta = -6$. Let the values of the ordered pair (α, β) for which the area of the parallelogram of diagonals $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ is $\frac{\sqrt{21}}{2}$, be (α_1, β_1) and (α_2, β_2) . Then $\alpha_1^2 + \beta_1^2 - \alpha_2\beta_2$ is equal to: (1) 19 (2) 17 (3) 24 (4) 21 [JEE Main, 9th April 2024, Evening Shift] FPR: 4 Class: XII

Chapter: Vector Algebra Subtopic: Cross Product

6. Between the following two statements :

undupedia.com

Statement I: Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$. Then the vector \vec{r} satisfying $\vec{a} \times \vec{r} = \vec{a} \times \vec{b}$ and $\vec{a} \cdot \vec{r} = 0$ is of magnitude $\sqrt{10}$.

Statement II : In a triangle ABC, $\cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}$.

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 5

Class: XII

Chapter: Vector Algebra

Subtopic: Miscellaneous/Mixed

9. Let the foci of a hyperbola *H* coincide with the foci of the ellipse $E: \frac{(x-1)^2}{100} + \frac{(y-1)^2}{75} = 1$ and the eccentricity of the hyperbola H be the reciprocal of the eccentricity of the ellipse E. If the length of the transverse axis of H is α and the length of its conjugate axis is β , then $3\alpha^2 + 2\beta^2$ is equal to

(1) 205	(2) 225	(3) 242	(4) 237					
	[JEE Main, 9 th April 2024, Evening Shift]							
	FPR: 2							
Class: XI								
Chapter: Hyperbola								
	Subtopic: General Terms							

12. If the variance of the frequency distribution

x	c	2 c	3 c	4 c	5 c	6 c				
f	2	1	1	1	1	1				
is 160, then the value of $c \in N$ is										
(1) 6			((2) 7		(3)	5	(4) 8		
[JEE Main, 9 th April 2024, Evening Shift]										
FPR: 1										
	Class: XI									
Chapter: Statistics										
Subtopic: Mean and Variance										

Fundupedia.com

MATHEMATICS

15. The value of the integral
$$\int_{-1}^{2} \log_{e} \left(x + \sqrt{x^{2} + 1} \right) dx$$
 is
(1) $\sqrt{2} - \sqrt{5} + \log_{e} \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$
(2) $\sqrt{5} - \sqrt{2} + \log_{e} \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$
(3) $\sqrt{2} - \sqrt{5} + \log_{e} \left(\frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$
(4) $\sqrt{5} - \sqrt{2} + \log_{e} \left(\frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$

[JEE Main, 9th April 2024, Evening Shift] _____ FPR: 5

Class: XII

Chapter: Definite Integration

Subtopic: Definite Integration by Parts

16. If an unbiased dice is rolled thrice, then the probability of getting a greater number in the i^{th} roll than the number obtained in the $(i - 1)^{th}$ roll, i = 2,3, is equal to

		JEE Main, 9th April 2024, Evening Shift							
	undupedia.com Key to success	MAT							
19.	Let $\int_{0}^{x} \sqrt{1 - (y'(t))^2} dt = \int_{0}^{x} y(t) dt, 0 \le x \le 3, y \ge 0, y(0) = 0$. Then at $x = 2, y'' + y + 1$ is equal to								
	(1) 1	(2) 2	(3)	$\sqrt{2}$	(4) 1/2				
	[JEE Main, 9 th April 2024, Evening Shift]								
	FPR: 2								
	Class: XII								
	Chapter: Definite Integration								
	Subtopic: Leibnitz Theorem								

20. Consider the line L passing through the points (1,2,3) and (2,3,5). The distance of the point $\left(\frac{11}{3},\frac{11}{3},\frac{19}{3}\right)$ from the line L along the line $\frac{3x-11}{2} = \frac{3y-11}{1} = \frac{3z-19}{2}$ is equal to (1) 4 (2) 6 (3) 5 (4) 3

> [JEE Main, 9th April 2024, Evening Shift] FPR: 2 Class: XII Chapter: Three Dimensional Geometry

Subtopic: Equation of Line

Part-B

Q.21 to Q. 30 are Numerical Value Type Questions (+4, -1) Attempt any 5 out of 10 Questions

21. Let the inverse trigonometric functions take principal values. The number of real solutions of the equation

 $2\sin^{-1}x + 3\cos^{-1}x = \frac{2\pi}{5}$, is _____.

[JEE Main, 9th April 2024, Evening Shift] FPR: 1 Class: XII Chapter: Inverse Trigonometric Equations Subtopic: Domain and Range of a ITF

22. The square of the distance of the image of the point (6, 1, 5) in the line $\frac{x-1}{3} = \frac{y}{2} = \frac{z-2}{4}$, from the origin

is _____

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XII

Chapter: Three Dimensional Geometry

Subtopic: Image, Foot of Perpendicular and Perpendicular Distance from Line

23. Consider the matrices: $A = \begin{bmatrix} 2 & -5 \\ 3 & m \end{bmatrix}, B = \begin{bmatrix} 20 \\ m \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \end{bmatrix}$. Let the set of all *m*, for which the system

of equation AX = B has a negative solution (i.e., x < 0 and y < 0), be the interval (a, b). Then $8 \int_{a}^{b} |A| dm$ is equal to

[JEE Main, 9th April 2024, Evening Shift] FPR: 2 Class: XII Chapter: Matrices Subtopic: Product of Matrices

24. The number of integers, between 100 and 1000 having the sum of their digits equals to 14, is _____

26. Let the set of all values of p, for which $f(x) = (p^2 - 6p + 8)(sin^2 2x - cos^2 2x) + 2(2 - p)x + 7$ does not have any critical point, be the interval (a, b). Then 16 ab is equal to _____.

27. Consider the circle C: $x^2 + y^2 = 4$ and the parabola P: $y^2 = 8x$. If the set of all values of α , for which three chords of the circle C on three distinct lines passing through the point (α , 0) are bisected by the parabola P is the interval (p, q), then $(2q - p)^2$ is equal to _____.

[JEE Main, 9th April 2024, Evening Shift] FPR: 3 Class: XI Chapter: Parabola

Subtopic: Chords on Parabola

28. For a differentiable function $f: \mathbb{R} \to \mathbb{R}$, suppose $f'(x) = 3f(x) + \alpha$, where $\alpha \in \mathbb{R}$, f(0) = 1 and $\lim_{x \to -\infty} f(x) = 7$. Then $9f(-\log_e 3)$ is equal to .

[JEE Main, 9th April 2024, Evening Shift]

FPR: 5

Class: XII

Chapter: Differential Equation

Subtopic: Solution of Differential Equation: Variable Separable Form

407 20 51

29. Let $A = \{(x, y) : 2x + 3y = 23, x, y \in N\}$ and $B = \{x: (x, y) \in A\}$. Then the number of one-one functions from A to B is equal to _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XII

Chapter: Relations and Functions

Subtopic: Classification of Functions(One-One, Many-One, Into and Onto)

30. Let A, B and C be three points on the parabola $y^2 = 6x$ and let the line segment AB meet the line L through C parallel to the x-axis at the point D. Let M and N respectively be the feet of the perpendiculars from A

and B on L. Then $\left(\frac{AM \cdot BN}{CD}\right)^2$ is equal to _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XI

Chapter: Parabola

Subtopic: Tangent and Normal on Parabola