MATHEMATICS

1.
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\int_{x^3}^{(\pi/2)^3} \left(\sin\left(2t^{1/3}\right) + \cos\left(t^{1/3}\right) \right) dt}{\left(x - \frac{\pi}{2}\right)^2} \right) \text{ is equal to}$$

Fundupedia.com

(1)
$$\frac{9\pi^2}{8}$$
 (2) $\frac{3\pi^2}{2}$ (3) $\frac{5\pi^2}{9}$ (4) $\frac{11\pi^2}{10}$

[JEE Main, 9th April 2024, Evening Shift]

FPR: 4

Class: XII

Chapter: Definite Integration

Subtopic: Leibnitz Theorem

FORMULA / CONCEPT

Leibnitz Theorem

If
$$F(x) = \int_{g(x)}^{h(x)} f(t) dt$$
, then $F'(x) = f(h(x))h'(x) - f(g(x)g'(x))$

Answer: (1)

Solution:

Using (L' Hospital Rule)

$$= \lim_{x \to \frac{\pi}{2}} \frac{-(\sin 2x + \cos x) \cdot 3x^2}{2\left(x - \frac{\pi}{2}\right)}$$

(Using Leibnitz Theorem)

Again, using L' Hospital rule,

Using (L' Hospital Rule)

$$= \lim_{x \to \frac{\pi}{2}} \frac{-(\sin 2x + \cos x) \cdot 3x^{2}}{2\left(x - \frac{\pi}{2}\right)}$$
(Using Leibnitz Theorem)
Again, using L' Hospital rule,

$$= \lim_{x \to \frac{\pi}{2}} \frac{(-2\cos 2x + \sin x) 3x^{2} + 6x(-\sin 2x - \cos x)}{2}$$

$$= \frac{(-2\cos \pi + \sin \pi/2) 3\frac{\pi^{2}}{4} + 6 \times \frac{\pi}{2}(-\sin \pi - \cos \frac{\pi}{2})}{2} = \frac{(2+1)3\pi^{2} + 0}{8} = \frac{9\pi^{2}}{8}$$

 $\frac{9\pi^2}{8}$

Class: XI

Chapter: Binomial Theorem

Subtopic: General Term and Coefficients

FORMULA / CONCEPT

General Term

General term in the expansion of $(a + b)^n$ is $T_{r+1} = {}^nC_r a^{n-r} b^r$

Answer: (2)

Solution:

$$\left(x^{2/3} + \frac{1}{2}x^{-2/5}\right)^{9}$$

$$T_{r+1} = {}^{9}C_{r}\left(x^{2/3}\right)^{9-r} \cdot \left(\frac{1}{2}x^{-2/5}\right)^{r}$$

$$= {}^{9}C_{r}\left(\frac{1}{2}\right)^{r} \cdot x^{\frac{18-2r}{3}-\frac{2r}{5}}$$
For coeff. of $x^{2/3}$, $\frac{90-16r}{15} = \frac{2}{3}$
16 r = 80
r = 5
For coeff. of $x^{-2/5}$, $\frac{90-16r}{15} = \frac{-2}{5}$
16 r = 96
r = 6
Sum of coff = ${}^{9}C_{5} \times \frac{1}{32} + {}^{9}C_{6}\frac{1}{64}$

$$= \frac{63}{16} + \frac{21}{16} \Rightarrow \frac{84}{16}$$

$$= \frac{21}{4}$$

- 3. The area (in square units) of the region enclosed by the ellipse $x^2 + 3y^2 = 18$ in the first quadrant below the line y = x is
 - (1) $\sqrt{3}\pi + \frac{3}{4}$ (2) $\sqrt{3}\pi + 1$ (3) $\sqrt{3}\pi$ (4) $\sqrt{3}\pi \frac{3}{4}$

[JEE Main, 9th April 2024, Evening Shift] FPR: 4

Class: XI

Chapter: Ellipse

Subtopic: Auxiliary Circle and Parametric Equation

FORMULA / CONCEPT

Ratio of area inscribed in ellipse & area formed by corresponding points in its auxiliary circle

 $= \frac{\text{Semi} - \text{Minor Axis}}{\text{Semi} - \text{Major Axis}}$

Ley to success

Answer: (3)

Solution:

 $E: x^2 + 3y^2 = 18 \& y = x$

$$\frac{x^2}{(3\sqrt{2})^2} + \frac{y^2}{(\sqrt{6})^2} = 1$$

Solving above two equations

$$x = y = \frac{3}{\sqrt{2}}$$
$$A\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$$

Now, equation of auxiliary circle of ellipse is $x^2 + y^2 = (3\sqrt{2})^2 = 18$

$$\Rightarrow C'\left(\frac{3}{\sqrt{2}},\frac{3\sqrt{3}}{2}\right)$$

Leyto success

MATHEMATICS

$$\angle C'OC = \theta = \tan^{-1} \left(\frac{\frac{3\sqrt{3}}{\sqrt{2}}}{\frac{3}{\sqrt{2}}} \right)$$

$$\Rightarrow \theta = \tan^{-1}\left(\sqrt{3}\right) = \frac{\pi}{3}$$

Comparing equation of ellipse with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,

We get
$$a = 3\sqrt{2}$$
 & $b = \sqrt{6}$

Now, Required area

Fundupedia.com

$$= \frac{b}{a} \times (\text{area of sector OC'BO})$$
$$= \frac{b}{a} \times \frac{1}{2} r^2 \theta = \frac{\sqrt{6}}{3\sqrt{2}} \times \frac{1}{2} \times (3\sqrt{2})^2 \times \frac{\pi}{3}$$
$$= \sqrt{3}\pi$$

Fundupedia.com

MATHEMATICS

- 4. Let $\alpha, \beta; \alpha > \beta$, be the roots of the equation $x^2 \sqrt{2}x \sqrt{3} = 0$. Let $P_n = \alpha^n \beta^n, n \in \mathbb{N}$. Then $(11\sqrt{3} 10\sqrt{2}) P_{10} + (11\sqrt{2} + 10)P_{11} 11P_{12}$ is equal to
 - (1) $10\sqrt{3}P_9$ (2) $11\sqrt{2}P_9$ (3) $10\sqrt{2}P_9$ (4) $11\sqrt{3}P_9$

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XI

Chapter: Quadratic Equation

Subtopic: Newton's Formula

FORMULA / CONCEPT

Newton's Formula

If α , β are the roots of a quadratic equation $ax^2 + bx + c = 0$ satisfying the relation $P_n = \lambda \alpha^n \pm \mu \beta^n$,

then we have a $P_n + b P_{n-1} + c P_{n-2} = 0$

Answer: (1)

Solution:

$$\begin{aligned} x^{2} - \sqrt{2}x - \sqrt{3} &= 0 \\ P_{n} &= \alpha^{n} - \beta^{n} \\ P_{n} - \sqrt{2}P_{n-1} - \sqrt{3} P_{n-2} &= 0 \\ \text{For n} &= 12 \\ P_{12} &= \sqrt{3}P_{10} + \sqrt{2}P_{11} \qquad \dots (1) \\ \text{For n} &= 11 \\ P_{11} &= \sqrt{3}P_{9} + \sqrt{2}P_{10} \qquad \dots (2) \\ \text{Now, Given expression,} \\ &= 11\sqrt{3}P_{10} - 10\sqrt{2}P_{10} + 11\sqrt{2}P_{11} + 10P_{11} - 11P_{12} \\ &= 11\sqrt{3}P_{10} - 10\sqrt{2}P_{10} + 11\sqrt{2}P_{11} + 10\sqrt{3}P_{9} + 10\sqrt{2}P_{10} - 11\sqrt{3}P_{10} - 11\sqrt{2}P_{11} \ [\text{using }(1) \& (2)] \\ &= 10\sqrt{3}P_{9} \end{aligned}$$

[IFF Main 9 th April 2024 Evening Shift]							
	(1)	19	(2) 17	(3)	24	(4)	21
	(α_1, β_1) and (α_2, β_2) . Then $\alpha_1^2 + \beta_1^2 - \alpha_2 \beta_2$ is equal to:						
	the ordered pair (α, β) for which the area of the parallelogram of diagonals $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ is $\frac{\sqrt{21}}{2}$, be						
5.	Let $\vec{a} = 2\hat{i} + \alpha\hat{j} + \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = \beta\hat{j} - \hat{k}$, where α and β are integers and $\alpha\beta = -6$. Let the values of						

FPR: 4

Class: XII

Chapter: Vector Algebra

Subtopic: Cross Product

FORMULA / CONCEPT

Cross Product

	î	ĵ	ĥ	
If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a} \times \vec{b} =$	a_1	a ₂	a ₃	
	\mathbf{b}_1	b_2	b ₃	

Answer: (1)

Fundupedia.com

Solution:

Area of Parallelogram
$$= \frac{1}{2} |(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})| = \frac{\sqrt{21}}{2}$$

 $(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c}) = \begin{vmatrix} i & j & k \\ 1 & \alpha & 2 \\ -1 & \beta & 0 \end{vmatrix}$
 $= -2\beta\hat{i} - 2\hat{j} + (\beta + \alpha)\hat{k}$
 $|(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})| = \sqrt{4\beta^2 + 4 + \beta^2 + \alpha^2 + 2\alpha\beta} = \sqrt{21}$
 $5\beta^2 + \alpha^2 + 4 - 12 = 21$
 $\alpha^2 + 5\beta^2 = 29$
Also,
 $a\beta = -6$
 $\beta = \frac{-6}{\alpha}$
 $\alpha^2 + \frac{180}{\alpha^2} = 29$

ter to success

Fundupedia.com

$\alpha^{4} - 29\alpha^{2} + 180 = 0$ $\alpha^{4} - 20\alpha^{2} - 9\alpha^{2} + 180 = 0$ $(\alpha^{2} - 20) (\alpha^{2} - 9) = 0$ $\alpha = 3, -3 \text{ as } \alpha \in I$ $\beta = -2, 2$ Now, $\alpha_{1}^{2} + \beta_{1}^{2} - \alpha_{2}\beta_{2}$ = 9 + 4 + 6 = 19

Thanks for visiting www.fundupedia.com

MATHEMATICS

6. Between the following two statements :

Statement I: Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$. Then the vector \vec{r} satisfying $\vec{a} \times \vec{r} = \vec{a} \times \vec{b}$ and $\vec{a} \cdot \vec{r} = 0$ is of magnitude $\sqrt{10}$.

Statement II : In a triangle ABC, $\cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}$.

- (1) Statement I is correct but Statement II is incorrect.
- (2) Statement I is incorrect but Statement II is correct.
- (3) Both Statement I and Statement II are correct.
- (4) Both Statement I and Statement II are incorrect.

[JEE Main, 9th April 2024, Evening Shift] FPR: 5 Class: XII Chapter: Vector Algebra Subtopic: Miscellaneous/Mixed

FORMULA / CONCEPT

Dot and Cross Product

Keyto success

Answer: (2)

Solution:

Given, $\vec{a} \times \vec{r} = \vec{a} \times \vec{b}$	
$\vec{a} \times (\vec{r} - \vec{b}) = 0$	
$\therefore \vec{r} - \vec{b} = \lambda \vec{a}$	
$\vec{r} = \vec{b} + \lambda \vec{a}$	
Now,	
$\vec{a} \cdot \vec{r} = 0$	
$\vec{a}\cdot\vec{b}+\lambda \vec{a} ^2=0$	
$7+14\lambda = 0$	
$\lambda = -\frac{1}{2}$	
$\vec{r} = 2\hat{i} + \hat{j} - \hat{k} - \frac{1}{2}(\hat{i} + 2\hat{j})$	$-3\hat{k}$
$\vec{r} = \frac{3}{2}\hat{i} + \frac{1}{2}\hat{k}$	
	ть

4ey to success

Fundupedia.com

MATHEMATICS

$$\left|\vec{r}\right| = \sqrt{\frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{10}}{2}$$

Statement - I is Incorrect

Since, minimum value of $\cos 2A + \cos 2B + \cos 2C$ holds for equilateral triangle.

Statement-II is correct.

Answer: (2)

Solution:

$$\Rightarrow \frac{z-2i}{z+2i} + \frac{\overline{z}+2i}{\overline{z}-2i} = 0$$

$$\Rightarrow (z-2i)(\overline{z}-2i) + (\overline{z}+2i)(z+2i) = 0$$

$$\Rightarrow 2(z\overline{z}-4) = 0 \Rightarrow |z| = 2$$

Now, $|z-(6+8i)| \le |z|+|6+8i|$
$$\le 2+10$$

≤ 12

Key to success

FORMULA / CONCEPT

Series Expansion

$$(1+x)^{\frac{1}{x}} = e\left(1-\frac{x}{2}+\frac{11x^2}{24}-...\right), \text{ for } |x| < 1$$

Answer: (2)

Solution:

Let 2x = t $\lim_{t \to 0} \frac{e^{-(1+t)^{\frac{1}{t}}}}{t/2}$ $= 2\lim_{t \to 0} \frac{e^{-e^{-(1-\frac{t}{2}+\frac{11}{24}t^2....)}}}{t}$ $= 2\lim_{t \to 0} \frac{e^{-e^{+\frac{e^{t}}{2}-\frac{11e^{-t^2}}{24}t^2+....t}}}{t}$ $= 2 \times \frac{e}{2} = e$

- 9. Let the foci of a hyperbola *H* coincide with the foci of the ellipse $E: \frac{(x-1)^2}{100} + \frac{(y-1)^2}{75} = 1$ and the eccentricity of the hyperbola H be the reciprocal of the eccentricity of the ellipse E. If the length of the transverse axis of H is α and the length of its conjugate axis is β , then $3\alpha^2 + 2\beta^2$ is equal to
 - (1) 205 (2) 225 (3) 242 (4) 237

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XI

Chapter: Hyperbola

Subtopic: General Terms

FORMULA / CONCEPT

Co-ordinates of Foci of Ellipse and Hyperbola

Answer: (2)

Fundupedia.com

Solution:

$E:\frac{(x-1)^2}{100} + \frac{(y-1)^2}{75} = 1$	
Given, $e_{\rm H} = \frac{1}{e_{\rm E}}$	
$e_{\rm E}^2 = 1 - \frac{3}{4} = \frac{1}{4}$	2
$e_E = \frac{1}{2}$	CUCCES
$\therefore e_{\rm H} = 2$	×0, ×0
Transverse axis $= \alpha \Rightarrow a = \frac{\alpha}{2}$	e tes
conjugate axis $= \beta \Rightarrow b = \frac{\beta}{2}$	
$e_{\rm H}^2 = 1 + \frac{\beta^2}{\alpha^2}$	
$4\alpha^2 = \alpha^2 + \beta^2 \Longrightarrow 3\alpha^2 = \beta^2$	(1)
ae = 5	
$\frac{\alpha}{2} \times 2 = 5 \Longrightarrow \alpha = 5$	
From equation (1), $\beta^2 = 75$	
$\therefore 3\alpha^2 + 2\beta^2 = 75 + 150 = 225$	

FORMULA / CONCEPT Integration Using Substitution

Answer: (3)

Solution:

tey to success

MATHEMATICS

$$= \int_{1/4}^{3/4} \left[(1-x) - 1 \right] dx$$
$$= \int_{1/4}^{3/4} - x dx = \left[-\frac{x^2}{2} \right]_{1/4}^{3/4} = -\frac{1}{2} \left[\frac{9}{16} - \frac{1}{16} \right]$$
$$= -\frac{1}{2} \times \frac{8}{16} \Longrightarrow -\frac{1}{4}$$

Fundupedia.com

11. If
$$\log_e y = 3\sin^{-1}x$$
, then $(1-x^2)y'' - xy'$ at $x = \frac{1}{2}$ is equal to

(1) $3e^{\pi/6}$ (2) $3e^{\pi/2}$ (3) $9e^{\pi/6}$ (4)

(4) $9e^{\pi/2}$

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XII

Chapter: Methods of Differentiation

Subtopic: Differentiation Based on Basic Rules(Product, Quotient and Chain)

FORMULA / CONCEPT

Product Rule of Differentiation

(fg)'(x) = f(x)g'(x) + f'(x)g(x)

4ey to success

Answer: (4)

Solution:

 $\log_e y = 3\sin^{-1}x$

$$y = e^{3\sin^{-1}x} \qquad \dots (1)$$

differentiating w.r.t x,

$$y' = e^{3\sin^{-1}x} \cdot \frac{3}{\sqrt{1 - x^2}}$$
$$\sqrt{1 - x^2} \cdot y' = 3e^{3\sin^{-1}x}$$

Again, differentiating w.r.t x

$$\sqrt{1-x^2} \cdot y'' - \frac{xy'}{\sqrt{1-x^2}} = \frac{9e^{3\sin^{-1}x}}{\sqrt{1-x^2}}$$

$$\left(1-x^2\right)y''-xy'=9y$$

(From equation (1))

Now, from equation (1), at $x = \frac{1}{2}$

$$y = e^{\pi/2}$$

$$\therefore \left(1-x^2\right)y''-xy'=9e^{\pi/2}$$

Key to success

Solution:

х	c	2 c	3 c	4 c	5 c	6 c
f	2	1	1	1	1	1
$\overline{\mathbf{x}} = \frac{\sum}{\mathbf{x}}$	$\frac{\mathbf{f}_{i}\mathbf{x}_{i}}{\mathbf{F}\mathbf{f}} =$	$\frac{22c}{7}$				

Now,
$$\operatorname{var}(x) = \frac{\sum f_i (x_i - \overline{x})^2}{\sum f_i}$$

 $(x_i - \overline{x})^2 : \frac{225c^2}{49} \frac{64c^2}{49} \frac{c^2}{49} \frac{36c^2}{49} \frac{169c^2}{49} \frac{400c^2}{49}$
f : 2 1 1 1 1 1

$$\operatorname{var}(x) = \frac{c^2}{49} \left[\frac{450 + 64 + 1 + 36 + 169 + 400}{7} \right]$$

$$=\frac{1120c^2}{49\times7}=160$$

$$c^2 = 49$$

 $c = \pm 7$

$$\therefore$$
 c = 7

$$: c \in N$$

13. Let the range of the function $f(x) = \frac{1}{2 + \sin 3x + \cos 3x}$, $x \in \mathbb{R}$ be [a,b]. If α and β are respectively the A.M. and the G.M. of a and b, then $\frac{\alpha}{\beta}$ is equal to (1) $\sqrt{2}$ (2) π (3) $\sqrt{\pi}$ (4) 2 [JEE Main, 9th April 2024, Evening Shift]

FPR: 1

Class: XI

Chapter: Trigonometric Ratios and Identities

Subtopic: Trigonometric Functions

FORMULA / CONCEPT

Range of a $\sin\theta + b \cos\theta$ is $\left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}\right]$

Answer: (1)

Fundupedia.com

Solution:

$$f(x) = \frac{1}{2 + \sin 3x + \cos 3x}$$
We know that,

$$-\sqrt{2} \le \sin 3x + \cos 3x \le \sqrt{2}$$

$$2 - \sqrt{2} \le 2 + \sin 3x + \cos 3x \le 2 + \sqrt{2}$$

$$\frac{1}{2 + \sqrt{2}} \le \frac{1}{2 + \sin 3x + \cos 3x} \le \frac{1}{2 - \sqrt{2}}$$

$$\therefore a = \frac{1}{2 + \sqrt{2}} \text{ or } \frac{2 - \sqrt{2}}{2}$$

$$b = \frac{1}{2 - \sqrt{2}} \text{ or } \frac{2 + \sqrt{2}}{2}$$

$$\alpha = A. \text{ M of a \& b} = \frac{\frac{2 - \sqrt{2}}{2} + \frac{2 + \sqrt{2}}{2}}{2} = 1$$

$$\beta = G. \text{ M of a \& b} = \sqrt{\frac{2 - \sqrt{2}}{2} \times \frac{2 + \sqrt{2}}{2}} = \frac{1}{\sqrt{2}}$$

$$\therefore \frac{\alpha}{\beta} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}$$

FORMULA / CONCEPT

Characteristic equation of square matrix A is $|A - \lambda I| = 0$.

Answer: (4)

Solution:

 $BCB^{-1} = A$ $BCB^{-1} BCB^{-1} = A \cdot A$ $BCICB^{-1} = A \cdot A$ $B^{-1} (BC^{-1} B^{-1}) B = B^{-1} A \cdot AB$ $C^2 = B^{-1} A A B$...(1) Ley to success Now, $AB^{-1} = A^{-1}$ $AB^{-1}A = A^{-1} \cdot A = I$ $\mathbf{A}^{-1} \mathbf{A} \mathbf{B}^{-1} \mathbf{A} = \mathbf{A}^{-1} \cdot \mathbf{I}$ $B^{-1}A = A^{-1}$...(2) From equation (1) & (2) $C^2 = A^{-1} \cdot AB$ $C^2 = B$ Now, characteristic equation of C² is, $|C^2 - \lambda I| = 0$ $\left|B-\lambda I\right|=0$ $\begin{vmatrix} 1-\lambda & 3 \\ 1 & 5-\lambda \end{vmatrix}$ = 0 $\lambda^2 - 6\lambda + 2 = 0$ $B^2 - 6B + 2 = 0$ $C^4 - 6C^2 + 2I = 0$ $\therefore \quad \alpha = -6, \beta = 2$ So, $2\beta - \alpha = 10$

Fundupedia.com

MATHEMATICS

15. The value of the integral
$$\int_{-1}^{2} \log_{e} \left(x + \sqrt{x^{2} + 1} \right) dx$$
 is

(1)
$$\sqrt{2} - \sqrt{5} + \log_{e} \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$$

(3)
$$\sqrt{2} - \sqrt{5} + \log_{e} \left(\frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$$

(2)
$$\sqrt{5} - \sqrt{2} + \log_{e} \left(\frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$$

(4) $\sqrt{5} - \sqrt{2} + \log_{e} \left(\frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)$

tey to success

[JEE Main, 9th April 2024, Evening Shift]

FPR: 5

Class: XII

Chapter: Definite Integration

Subtopic: Definite Integration by Parts

FORMULA / CONCEPT

Integration By Parts

$$\int \mathbf{I} \cdot \mathbf{I} d\mathbf{x} = \mathbf{I} \int \mathbf{I} d\mathbf{x} - \int \left(\left(\mathbf{I} \right)^{\prime} \int \mathbf{I} d\mathbf{x} \right) d\mathbf{x}$$

Answer: (3)

Solution:

Using by parts,

$$= \left[\log_{e} \left(x + \sqrt{x^{2} + 1} \right) \cdot x \right]_{-1}^{2} - \int_{-1}^{2} \frac{1 + \frac{2x}{2\sqrt{x^{2} + 1}}}{x + \sqrt{x^{2} + 1}} \cdot x \cdot dx$$

$$= 2\log_{e} \left(2 + \sqrt{5} \right) + \log_{e} \left(\sqrt{2} - 1 \right) - \int_{-1}^{2} \frac{\left(\sqrt{x^{2} + 1} + x \right) x}{\left(\sqrt{x^{2} + 1} \right) \cdot \left(x + \sqrt{x^{2} + 1} \right)} dx$$

$$= \log_{e} \left[\frac{\left(2 + \sqrt{5} \right)^{2}}{\sqrt{2} + 1} \right] - \int_{-1}^{2} \frac{x \cdot dx}{\sqrt{1 + x^{2}}}$$

Ley to success

MATHEMATICS

$$= \log_{e} \left(\frac{9+4\sqrt{5}}{\sqrt{2}+1} \right) - \int_{2}^{5} \frac{dt}{2\sqrt{t}} \left(\begin{array}{c} \text{put } 1+x^{2} = t \\ x \cdot dx = \frac{dt}{2} \end{array} \right)$$
$$= \log_{e} \left(\frac{9+4\sqrt{5}}{\sqrt{2}+1} \right) - (\sqrt{t})_{2}^{5}$$
$$= \log_{e} \left(\frac{9+4\sqrt{5}}{\sqrt{2}+1} \right) - \sqrt{5} + \sqrt{2}$$
$$= \sqrt{2} - \sqrt{5} + \log_{e} \left(\frac{9+4\sqrt{5}}{\sqrt{2}+1} \right)$$

Keyto success

MATHEMATICS

- 16. If an unbiased dice is rolled thrice, then the probability of getting a greater number in the i^{th} roll than the number obtained in the $(i 1)^{th}$ roll, i = 2,3, is equal to
 - (1) 1/54 (2) 5/54 (3) 2/54 (4) 3/54

[JEE Main, 9th April 2024, Evening Shift]

FPR: 1

Class: XII

Chapter: Probability

Subtopic: Classical Definition

FORMULA / CONCEPT Classical Definition of Probability $P(E) = \frac{n(E)}{n(S)}$

Answer: (2)

Solution:

Let x_1 , x_2 , x_3 be the numbers on 1^{st} , 2^{nd} & 3^{rd} throw respectively.

- Given: $x_1 < x_2 < x_3$
- \therefore Favorable cases = ${}^{6}C_{3}$

Total cases $= 6^3 = 216$

$$\text{Prob} = \frac{{}^{6}\text{C}_{3}}{216} \Longrightarrow \frac{20}{216} = \frac{5}{54}$$

Sum of Infinite G.P. is
$$\frac{a}{1-a}$$

Key to success

Answer: (4)

Solution:

$$\sum_{n=0}^{\infty} ar^n = 57$$
$$\frac{a}{1-r} = 57 \qquad \dots (1)$$

also,

$$\sum_{n=0}^{\infty} a^3 \cdot r^{3n} = 9747$$
$$\frac{a^3}{1-r^3} = 9747 \qquad \dots (2)$$

Cubing equation (1)

$$\frac{a^3}{(1-r)^3} = (57)^3 \qquad \dots (3)$$

Now, dividing eq (2) & (3)

$$\frac{\frac{a^3}{(1-r)(1+r+r^2)}}{\frac{a^3}{(1-r)^3}} = \frac{9747}{57 \times 57 \times 57}$$

 $\frac{1\!+\!r^2-\!2r}{1\!+\!r\!+\!r^2}\!=\!\frac{1}{19}$

tey to success

Fundupedia.com

M $19+19r^{2}-38r = 1+r+r^{2}$ $18r^{2}-39r+18 = 0$ $6r^{2}-13r+6 = 0$ $6r^{2}-9r-4r+6 = 0$ 3r(2r-3)-2(2r-3) = 0 (2r-3)(3r-2) = 0 $r = \frac{3}{2}, \frac{2}{3}$ Taking $r = \frac{2}{3}$ [:: r < 1, for ∞ sum of G.P.] From equation (1) $a = 57 \times \frac{1}{3} \Longrightarrow 19$

$$\therefore a + 18r = 19 + 18 \times \frac{2}{3} \Longrightarrow 19 + 12 = 31$$

Thanks for visiting www.fundupedia.com

MATHEMATICS

Fundupedia.com

MATHEMATICS

18. Two vertices of a triangle ABC are A(3, -1) and B(-2, 3), and its orthocentre is P(1, 1). If the coordinates of the point C are (α, β) and the centre of the circle circumscribing the triangle PAB is (h, k), then the value of $(\alpha + \beta) + 2(h + k)$ equals

(1) 5 (2) 51	(3) 15	(4) 81
--------------	--------	--------

[JEE Main, 9th April 2024, Evening Shift]

FPR: 3

Class: XI

Chapter: Straight Line

Subtopic: Centres of a Triangle

FORMULA / CONCEPT

"Orthocentre" of a triangle is intersection point of three altitudes.

"Circumcentre" of a triangle is intersection point of three perpendicular bisectors.

Xey to succes

Answer: (1)

Solution:

Equation of

PC:
$$y-1 = \frac{5}{4}(x-1)\left(\because m_{AB} = -\frac{4}{5}\right)$$

...(1)

...(2)

...(3)

4y - 4 = 5x - 5

$$5x - 4y = 1$$

Equation of BC: y - 3 = 1(x + 2)

$$(\because m_{AP} = -1).$$

$$x - y = -5$$

Solving equation (1) & (2), x = 21, y = 26

$$\therefore$$
 $\alpha = 21, \beta = 26 \Rightarrow (\alpha + \beta) = 47$

Now, equation of \perp bisector of AP:

$$y - 0 = 1(x - 2)$$

$$x - y = 2$$

Ley to success

MATHEMATICS

Equation of \perp bisector of

AB:
$$y-1 = \frac{5}{4}\left(x-\frac{1}{2}\right)$$
 ...(4)

Solving equation (3) & (4),

x =
$$-\frac{19}{2}$$
, y = $-\frac{23}{2}$
i.e 2 h = -19, 2k = -23
∴ 2(h + k) = -42

So, $(\alpha + \beta) + 2(h + k) = 47 - 42 = 5$

Answer: (1)

Solution:

$$\int_{0}^{x} \sqrt{1 - \left(y'(t)\right)^2} dt = \int_{0}^{x} y(t) dt$$

Differentiating both sides w.r.t x.

$$\sqrt{1 - (y'(x))^2} \cdot 1 = y(x) \cdot 1$$

$$1 - (y'(x))^2 = (y(x))^2$$

$$y'(x) = \sqrt{1 - y^2(x)} \implies (y'(x))^2 + (y(x))^2 = 1$$
Again Differentiating both sides, we get

2(y'(x)) y''(x) + 2(y(x))(y'(x)) = 0 $\Rightarrow y''(x) + y(x) = 0$ $\Rightarrow y'' + y + 1 = 1$

ter to success

MATHEMATICS

20. Consider the line L passing through the points (1,2,3) and (2,3,5). The distance of the point $\left(\frac{11}{3},\frac{11}{3},\frac{19}{3}\right)$ from the line L along the line $\frac{3x-11}{2} = \frac{3y-11}{1} = \frac{3z-19}{2}$ is equal to (1) 4 (2) 6 (3) 5 (4) 3

FPR: 2

Class: XII

Chapter: Three Dimensional Geometry

Subtopic: Equation of Line

FORMULA / CONCEPT

If direction ratios of two lines are proportional, then the lines are parallel.

Key to success

Answer: (4)

Solution:

Equation in of tine L passing through (1, 2, 3) & (2, 3, 5)

$$\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{2} = \lambda$$

$$M(\lambda + 1, \lambda + 2, 2\lambda + 3)$$

$$DR's \text{ of PM: } \frac{3\lambda - 8}{3}, \frac{3\lambda - 5}{3}, \frac{6\lambda - 10}{3}$$

$$DR's \text{ of given line: } \frac{2}{3}, \frac{1}{3}, \frac{2}{3}$$

$$\therefore \frac{3\lambda - 8}{2} = \frac{3\lambda - 5}{1} = \frac{6\lambda - 10}{2}$$

$$3\lambda - 8 = 6\lambda - 10 \implies \lambda = \frac{2}{3}$$

$$B\left(\frac{5}{3}, \frac{8}{3}, \frac{13}{3}\right), AB = \sqrt{\frac{36 + 9 + 36}{9}} = 3$$
Thanks for

Thanks for visiting www.fundupedia.com

er the line
$$L$$

Fundupedia.com

21. Let the inverse trigonometric functions take principal values. The number of real solutions of the equation

$$2\sin^{-1}x + 3\cos^{-1}x = \frac{2\pi}{5}$$
, is _____

[JEE Main, 9th April 2024, Evening Shift]

FPR: 1

Class: XII

Chapter: Inverse Trigonometric Equations

Subtopic: Domain and Range of a ITF

FORMULA / CONCEPT Range of $\cos^{-1}x$ is $[0, \pi]$

Key to success

Answer: (0)

Solution:

 $2\sin^{-1}x + 2\cos^{-1}x + \cos^{-1}x = \frac{2\pi}{5}$ $2\left(\frac{\pi}{2}\right) + \cos^{-1}x = \frac{2\pi}{5}$ $\cos^{-1}x = \frac{2\pi}{5} - \pi$ $\cos^{-1}x = \frac{-3\pi}{5}$ But $\cos^{-1}x \in [0, \pi]$ $\therefore \text{ No real value of } x$ No solution

22. The square of the distance of the image of the point (6, 1, 5) in the line $\frac{x-1}{3} = \frac{y}{2} = \frac{z-2}{4}$, from the origin is _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XII

Chapter: Three Dimensional Geometry

Subtopic: Image, Foot of Perpendicular and Perpendicular Distance from Line

FORMULA / CONCEPT

Image of a Point about a line.

Answer: (62)

Solution:

Consider the matrices : $A = \begin{bmatrix} 2 & -5 \\ 3 & m \end{bmatrix}, B = \begin{bmatrix} 20 \\ m \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \end{bmatrix}$. Let the set of all *m*, for which the system 23.

of equation AX = B has a negative solution (i.e., x < 0 and y < 0), be the interval (a, b). Then $8\tilde{\int} |A| dm$ is equal to

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XII

Chapter: Matrices

Subtopic: Product of Matrices

FORMULA / CONCEPT

Solving matrix equation AX = B

Key to success

Answer: (450)

Solution:

AX = B $\mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$ $X = \frac{1}{2 + 15} \begin{bmatrix} m & 5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 20 \\ m \end{bmatrix}$ $X = \frac{1}{2 m + 15} \begin{bmatrix} 25 m \\ 2 m - 60 \end{bmatrix}$ $x = \frac{25 \text{ m}}{2 \text{ m} + 15}, y = \frac{2 \text{ m} - 60}{2 \text{ m} + 15}$ Now, x < 0 and y < 0+ - + and + - $-\frac{15}{2}$ $M \in \left(-\frac{15}{2}, 0\right) \qquad M \in \left(-\frac{15}{2}, 30\right)$ $\therefore m \in \left(-\frac{15}{2}, 0\right)$ $a = -\frac{15}{2}, b = 0$ Now, $8\int^{b} |A| dm$

Thanks for visiting www.fundupedia.com

30

tey to success

Fundupedia.com

MATHEMATICS

$$= 8 \int_{\frac{-15}{2}}^{0} (2m + 15) dm$$

= $8 \left[m^{2} + 15m \right]_{-15/2}^{0}$
= $-8 \left[\frac{225}{4} - \frac{225}{2} \right] = -8 \times \left(-\frac{225}{4} \right) = 450$

24. The number of integers, between 100 and 1000 having the sum of their digits equals to 14, is _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 5

Class: XI

Chapter: Permutations and Combinations

Subtopic: Coefficient Method

FORMULA / CONCEPT

Coefficient Method

Coefficient of n^r in $(1 - x)^{-n} = {}^{n+r-1}C_r$

Answer: (70)

Solution:

$$x_{1} + x_{2} + x_{3} = 14, \text{ where } 1 \le x_{1} \le 9, 0 \le x_{2}, x_{3} \le 9$$

Coefficient of x^{14} in $(x^{1} + x^{2} + ...x^{9})(x^{0} + x^{1} + x^{2} + ...+x^{9})^{2}$

$$= x(1+x+...x^{8})(1+x+x^{2}+...x^{9})^{2}$$

$$= x(1-x^{9})((1-x^{10})^{2} \cdot (1-x)^{-3}$$

$$= x.(1-x^{9})(1-2x^{10} + x^{20})(1-x)^{-3}$$

$$= x.(1-2x^{10} + x^{20} - x^{9} + 2x^{19} - x^{29})(1-x)^{-3}$$

$$= x(1-2x^{10} - x^{9} + ...)(1-x)^{-3} \text{ (ignoring higher power})$$

No. of integer $= {}^{3+13-1}C_{13} - 2({}^{3+3-1}C_{3}) - ({}^{3+4-1}C_{4})$

$$= {}^{15}C_{13} - 2({}^{5}C_{3}) - {}^{6}C_{4} \Rightarrow 105 - 20 - 15 \Rightarrow 70$$

FORMULA / CONCEPT

Completing the series

Answer: (1011)

Solution:

$$\left(\frac{1}{\alpha+1} + \frac{1}{\alpha+2} + \dots + \frac{1}{\alpha+1012}\right) - \left(\frac{1}{2\cdot 1} + \frac{1}{4\cdot 3} + \frac{1}{6\cdot 5} + \dots + \frac{1}{2024\cdot 2023}\right) = \frac{1}{2024}$$

Considering,

$$\begin{aligned} \mathbf{Z} &= \frac{1}{2.1} + \frac{1}{4.3} + \frac{1}{6.5} + \dots \frac{1}{2024.2023} \\ \mathbf{Z} &= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots \frac{1}{2023} - \frac{1}{2024} \\ \mathbf{Z} &= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots \dots \frac{1}{2023}\right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots \frac{1}{2024}\right) \\ \mathbf{Z} &= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots \frac{1}{2023}\right) - \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{2012}\right) \\ \text{Adding & subtracting } \left(\frac{1}{2} + \frac{1}{4} + \dots \frac{1}{2022}\right) \\ \mathbf{Z} &= \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \frac{1}{2023}\right) - \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{2012}\right) - \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{2011}\right) \\ \mathbf{Z} &= \left(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{2023}\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{2011}\right) - \frac{1}{2024} \\ \mathbf{Z} &= \frac{1}{1012} + \frac{1}{1013} \dots \frac{1}{2023} - \frac{1}{2024} \end{aligned}$$

Now, put z' in equation (1)

Key to success

MATHEMATICS

$$\left(\frac{1}{\alpha+1} + \frac{1}{\alpha+2} + \dots + \frac{1}{\alpha+10/2}\right) - \left(\frac{1}{1012} + \frac{1}{1013} + \dots + \frac{1}{2023}\right) + \frac{1}{2024}$$

Now, comparing above equation with equation (1)

 $\alpha = 1011$

Fundupedia.com

26. Let the set of all values of p, for which $f(x) = (p^2 - 6p + 8)(sin^2 2x - cos^2 2x) + 2(2 - p)x + 7$ does not have any critical point, be the interval (a, b). Then 16 ab is equal to _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 4

Class: XII

Chapter: Application of Derivatives

Subtopic: Critical and Stationary Points

FORMULA / CONCEPT

Critical Points

Values of 'x' where either f(x) = 0 or f'(x) fails to exist are critical points.

Answer: (252)

Solution:

$$f(x) = (p^{2} - 6p + 8)(\sin^{2} 2x - \cos^{2} 2x) + 2(2 - p)x + 7$$

$$f(x) = (p^{2} - 6p + 8)(-\cos 4x) + 2(2 - p)x + 7$$

$$f'(x) = 4\sin 4x (p^{2} - 6p + 8) + 2(2 - p) \neq 0$$

$$\sin 4x \neq \frac{2(p - 2)}{4(p - 2)(p - 4)}$$

$$\frac{(p - 2)}{2(p - 2)(p - 4)} > 1 \text{ or } \frac{p - 2}{2(p - 2)(p - 4)} < -1(p \neq 2)$$

$$\frac{1}{2p - 8} - 1 > 0 \text{ or } \frac{1}{2p - 8} + 1 < 0$$

$$\frac{1 - 2p + 8}{2(p - 4)} > 0 \text{ or } \frac{1 + 2p - 8}{2(p - 4)} < 0$$

$$\frac{a - 2p}{2(p - 4)} > 0 \text{ or } \frac{2p - 7}{2(p - 4)} < 0$$

$$\frac{-4}{4} = \frac{9}{2}$$

$$p \in \left(\frac{7}{2}, \frac{9}{2}\right)$$

$$P \in \left(\frac{7}{2}, \frac{9}{2}\right)$$

Ley to success

MATHEMATICS

$$a = \frac{7}{2}, b = \frac{9}{2}$$

Fundupedia.com

$$\therefore 16ab = 16 \times \frac{7}{2} \times \frac{9}{2} = 252$$

27. Consider the circle C: $x^2 + y^2 = 4$ and the parabola P: $y^2 = 8x$. If the set of all values of α , for which three chords of the circle C on three distinct lines passing through the point (α , 0) are bisected by the parabola P is the interval (p, q), then $(2q - p)^2$ is equal to _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 3

Class: XI

Chapter: Parabola

Subtopic: Chords on Parabola

FORMULA / CONCEPT

Equation of chord whose mid-point is given $T = S_1$

Answer: (80) Solution:

ter to succes

 $T = S_1$

$$xx_1 + yy_1 = x_1^2 + y_1^2$$

It passes through $(\alpha, 0)$

$$\therefore \alpha \mathbf{x}_1 = \mathbf{x}_1^2 + \mathbf{y}_1^2$$

$$\alpha(2t^2) = 4t^4 + 16t^2(x_1 = 2t^2, y_1 = 4t)$$

$$\alpha = 2t^2 + 8$$

$$t^2 = \frac{\alpha - 8}{2} \quad \because \quad t^2 > 0$$

$$\Rightarrow \alpha > 8$$

Also,

 $4t^{4} + 16t^{2} - 4 < 0 \text{ (point } (x_{1}, y_{1}) \text{ lies inside the circle)}$ $t^{4} + 4t - 1 < 0$ $(t^{2} + 2 + \sqrt{5}) (t^{2} + 2 - \sqrt{5}) < 0$ $\Rightarrow t^{2} + 2 - \sqrt{5} < 0$

$$\Rightarrow t^2 < -2 + \sqrt{5}$$

tey to success

MATHEMATICS

$$\Rightarrow \alpha = 2t^2 + 8 < 4 + 2\sqrt{5}$$

$$\therefore \alpha \in (8, 4 + 2\sqrt{5})$$

$$\therefore \alpha \in (8, 4 + 2\sqrt{5})$$

$$\therefore (2q - p)^2 = 80$$

Fundupedia.com

28. For a differentiable function $f: \mathbb{R} \to \mathbb{R}$, suppose $f'(x) = 3f(x) + \alpha$, where $\alpha \in \mathbb{R}$, f(0) = 1 and $\lim_{x \to -\infty} f(x) = 7$.

Then $9f(-\log_e 3)$ is equal to _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 5

Class: XII

Chapter: Differential Equation

Subtopic: Solution of Differential Equation: Variable Separable Form

FORMULA / CONCEPT

Solution of differential equation : Variable separable forms

Ley to success

Answer: (61)

Solution:

 $f'(x) = 3f(x) + \alpha$ $\frac{dy}{dx} = 3y + \alpha$

$$\frac{dy}{3y+\alpha} = dx$$

Integrating both the sides

$$\int \frac{dy}{3y + \alpha} = \int dx$$

$$\frac{1}{3}\ln\left|3y+\alpha\right| = x+c$$

 $\ln|3y+\alpha|=3x+3c$

 $|3y+\alpha|=e^{3x+3c}$

When $x \rightarrow -\infty y = 7$

$$3y + \alpha = 0$$

$$\alpha = -21$$

$$\frac{1}{3}\ln|3y-21| = x + c$$

Now, when x = 0, y = 1

$$\frac{1}{3}\ln|3y-21| = x + \frac{1}{3}\ln|8|$$

ter to success

Fundupedia.com

MATHEMATICS

$$\frac{1}{3}\ln\left(\frac{7-y}{6}\right) = x$$

Now, f(-ln 3)

$$\left[\ln\left(\frac{7-y}{6}\right) = -3\ln 3\right]$$
$$\left[\frac{7-y}{6} = \frac{1}{27}\right]$$
$$7-y = \frac{2}{9}$$
$$y = 7 - \frac{2}{9} = \frac{61}{9}$$

$$\therefore \quad 9f\left(-\ln 3\right) = 9 \times \frac{61}{9} = 61$$

29. Let $A = \{(x, y) : 2x + 3y = 23, x, y \in N\}$ and $B = \{x: (x, y) \in A\}$. Then the number of one-one functions from A to B is equal to _____.

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XII

Chapter: Relations and Functions

Subtopic: Classification of Functions(One-One, Many-One, Into and Onto)

FORMULA / CONCEPT

Classification of Functions

If n(A) = n(B) = m, then number of one-one functions from $A \rightarrow B$ is m!

Ley to succes

Answer: (24)

Solution:

2x + 3y = 23,

 $x, y \in N$

 $A = \{(1, 7), (4, 5), (7, 3), (10, 1)\}$

 $B = \{1, 4, 7, 10\}$

then no. of one-one functions = 4! = 24

30. Let A, B and C be three points on the parabola $y^2 = 6x$ and let the line segment AB meet the line L through C parallel to the x-axis at the point D. Let M and N respectively be the feet of the perpendiculars from A

and B on L. Then
$$\left(\frac{AM \cdot BN}{CD}\right)^2$$
 is equal to _____

[JEE Main, 9th April 2024, Evening Shift]

FPR: 2

Class: XI

Chapter: Parabola

Subtopic: Tangent and Normal on Parabola

FORMULA / CONCEPT

Equation of tangent at a point A(t) on parabola $y^2 = 4ax$ is $yt = x + at^2$.

Answer: (36)

Solution:

Ley

Considering A, B same point on parabola & M, N same foot of perpendiculars on x-axis.

Let C be at origin (0, 0)

Equation of tangent at A(t) is

$$yt = x + at^2$$

 $D(-at^2, 0)$

$$\left(\frac{\mathrm{AM} \cdot \mathrm{BM}}{\mathrm{CD}}\right)^2 = \left(\frac{2\mathrm{at} \cdot 2\mathrm{at}}{\mathrm{at}^2}\right)$$

 $=(4a)^{2}$

Comparing $y^2 = 4ax \& y^2 = 6x$, we get

4a = 6

Now,
$$\left(\frac{AM \cdot BN}{CD}\right)^2 = 6^2 = 36$$